Transcytosis inhibitor N-ethylmaleimide increases microvascular permeability in rat muscle.
نویسندگان
چکیده
N-ethylmaleimide (NEM) has been claimed to markedly inhibit the transvascular passage of small proteins and albumin by interacting with the docking and fusion of plasmalemmal vesicles with their target membranes. To investigate the role of transcytosis in the transcapillary passage of albumin, we assessed the effects of NEM on (125)I-labeled radioiodinated serum albumin clearance (RISA-Cl) from blood to muscle in isolated and maximally vasodilated perfused rat hindquarters, in which vascular pressures, pre- and postcapillary resistances, and the capillary filtration coefficient (CFC) were continuously monitored. NEM (0.3-0.5 mM) caused a marked increase mainly in precapillary vascular resistance. Thus the arterial-to-venous resistance ratio in NEM-treated animals was 3.12 +/- 0.56 versus 1.66 +/- 0.17 during the control period (P < 0.05). Despite that, there was a doubling of both CFC from 0.0363 +/- 0.0028 to 0.0778 +/- 0.0101 ml x min(-1) x mmHg(-1) x 100 g(-1) (P < 0.01) and RISA-Cl, compared with the control situation, signaling markedly increased microvascular permeability. Our results strongly suggest that NEM, besides producing marked vasoconstriction, also causes damage to the capillary endothelium. Thus, instead of inhibiting transvascular transport, NEM may induce increases in the bulk transport of albumin from blood to tissue.
منابع مشابه
NEM and filipin increase albumin transport in lung microvessels.
This study was undertaken to evaluate the role of transcytosis as a bulk transfer mechanism for the passage of albumin from blood to tissue. Isolated rat lungs were continuously weighed and perfused with an albumin-serum buffer solution under strictly controlled hemodynamic conditions, which allowed measurements of microvascular pressure and of the capillary filtration coefficient (L(p)S). With...
متن کاملTranscytosis of alpha1-acidic glycoprotein in the continuous microvascular endothelium.
By using perfusions and bolus administration, coupled with postembedding immunocytochemical procedures, we have identified the structures involved in the transport of derivatized orosomucoid (alpha1-acidic glycoprotein) across the continuous microvascular endothelium of the murine myocardium. Our findings indicate that: (i) monomeric orosomucoid binds to the luminal surface of the endothelium; ...
متن کاملVEGF-induced permeability increase is mediated by caveolae.
PURPOSE To determine the cellular route by which vascular endothelial cell growth factor (VEGF) increases the permeability of cultured retinal endothelial cells and to test whether nitric oxide (NO) production by NO synthase (NOS) is involved in signaling VEGF's permeability enhancing effects. METHODS Cultured bovine retinal microvascular endothelial (BRE) cells were used for bioassay of perm...
متن کاملEndothelial transcytotic machinery involves supramolecular protein-lipid complexes.
We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules > 20 A and that transcytosis is an N-ethylmaleimide-sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a compl...
متن کاملMicrovascular permeability.
This review addresses classical questions concerning microvascular permeabiltiy in the light of recent experimental work on intact microvascular beds, single perfused microvessels, and endothelial cell cultures. Analyses, based on ultrastructural data from serial sections of the clefts between the endothelial cells of microvessels with continuous walls, conform to the hypothesis that different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 281 4 شماره
صفحات -
تاریخ انتشار 2001